A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis.
نویسندگان
چکیده
The committed step of taxol (paclitaxel) biosynthesis is catalyzed by taxa-4(5),11(12)-diene synthase, a diterpene cyclase responsible for transforming the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to the parent olefin with a taxane skeleton. To obtain the corresponding cDNA clone, a set of degenerate primers was constructed based on consensus sequences of related monoterpene, sesquiterpene, and diterpene cyclases. Two of these primers amplified a 83-base pair fragment that was cyclase-like in sequence and that was employed as a hybridization probe to screen a cDNA library constructed from poly(A)+ RNA extracted from Pacific yew (Taxus brevifolia) stems. Twelve independent clones with insert size in excess of 2 kilobase pairs were isolated and partially sequenced. One of these cDNA isolates was functionally expressed in Escherichia coli, yielding a protein that was catalytically active in converting geranylgeranyl diphosphate to a diterpene olefin that was confirmed to be taxa-4(5),11(12)-diene by combined capillary gas chromatography-mass spectrometry. The sequence specifies an open reading frame of 2586 nucleotides, and the complete deduced polypeptide, including a long presumptive plastidial targeting peptide, contains 862 amino acid residues and has a molecular weight of 98,303, compared with about 79,000 previously determined for the mature native enzyme. Sequence comparisons with monoterpene, sesquiterpene, and diterpene cyclases of plant origin indicate a significant degree of similarity between these enzymes; the taxadiene synthase most closely resembles (46% identity, 67% similarity) abietadiene synthase, a diterpene cyclase from grand fir.
منابع مشابه
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
Taxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing titers of taxadiene--the first committed Taxol intermediate--approximately 1 gram per liter (~15,000-f...
متن کاملStructure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase
The structure of ent-copalyl diphosphate synthase reveals three α-helical domains (α, β and γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in ent-copalyl diphosphate synthase but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evo...
متن کاملThe Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis.
The first committed step in the gibberellin (GA) biosynthetic pathway is the conversion of geranylgeranyl pyrophosphate (GGPP) through copalyl pyrophosphate (CPP) to ent-kaurene catalyzed by ent-kaurene synthetases A and B. The ga1 mutants of Arabidopsis are gibberellin-responsive male-sterile dwarfs. Biochemical studies indicate that biosynthesis of GAs in the ga1 mutants is blocked prior to t...
متن کاملEngineering Isoprenoid Biosynthesis in Artemisia annua L. for the Production of Taxadiene: A Key Intermediate of Taxol
Taxadiene is the first committed precursor to paclitaxel, marketed as Taxol, arguably the most important anticancer agent against ovarian and breast cancer. In Taxus, taxadiene is directly synthesized from geranylgeranyl diphosphate (GGPP) that is the common precursor for diterpenoids and is found in most plants and microbes. In this study, Artemisia annua L., a Chinese medicinal herb that grow...
متن کاملAbietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate.
Abietadiene synthase catalyzes two sequential, mechanistically distinct cyclization reactions in the formation of a mixture of abietadiene double bond isomers as the committed step in resin acid biosynthesis. Each reaction is carried out at a separate active site residing in a structurally distinct domain, and the reactions are kinetically separable. The first cyclization reaction is initiated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 16 شماره
صفحات -
تاریخ انتشار 1996